Properties of Operators

1) The inverse of \hat{A} (written \hat{A}^{-1}) is defined by

$$\hat{A}^{-1} \hat{A} = \hat{A} \hat{A}^{-1} = \mathbf{I} \quad (1)$$

2) The transpose of \hat{A} (written \hat{A}^T) is a matrix with elements inverted about the diagonal

$$\left(\hat{A}^T\right)_{qn} = A_{qn} \quad (2)$$

If $\hat{A}^T = -\hat{A}$ then the matrix is antisymmetric.

3) The trace of \hat{A} is defined as the sum over the diagonal elements of \hat{A}

$$Tr(\hat{A}) = \sum_q A_{qq} \quad (3)$$

4) The Hermitian Adjoint of \hat{A}, written \hat{A}^\dagger, is

$$\hat{A}^\dagger = \left(\hat{A}^*\right)^\dagger \quad (4)$$

$$\left(\hat{A}^*\right)_{qn} = \left(\hat{A}_{qn}\right)^*$$

5) \hat{A} is Hermitian if

$$\hat{A}^\dagger = \hat{A} \quad \left(\hat{A}^\dagger\right)^* = A \quad (5)$$

If \hat{A} is Hermitian, then \hat{A}^\dagger is Hermitian and $e^{\hat{A}}$ is Hermitian. For a Hermitian operator, $\langle\psi | \hat{A} \phi\rangle = \langle\psi | \hat{A}^\dagger \phi\rangle$. Expectation values of Hermitian operators are real, so all physical observables are associated with Hermitian operators.

6) \hat{A} is a unitary operator if the Hermitian adjoint is also the inverse operator

$$\hat{A}^\dagger = \hat{A}^{-1} \quad \left(\hat{A}^\dagger\right)^* = \hat{A}^{-1} \quad (6)$$

$$\hat{A} \hat{A}^\dagger = \mathbf{I} \quad \Rightarrow \quad \left(\hat{A}^\dagger\right)_{qn} = \delta_{qn}$$

If \hat{A} is Hermitian, then $e^{i\hat{A}}$ is unitary.