MORSE OSCILLATOR

The Morse oscillator is a model for a particle in a one-dimensional anharmonic potential energy surface with a dissociative limit at infinite displacement.¹ It is commonly used for describing the spectroscopy of diatomic molecules and anharmonic vibrational dynamics, and most of its properties can be expressed through analytical expressions.² The Morse potential is

$$V(x) = D_e \left[1 - e^{-\alpha x} \right]^2 \tag{1}$$

where $x = (r - r_0)$. D_e sets the depth of the energy minimum at $r = r_0$ relative to the dissociation limit as $r \to \infty$, and α sets the curvature of the potential. If we expand V in powers of x about x=0,

$$V(x) \approx \frac{1}{2}\kappa x^{2} + \frac{1}{6}gx^{3} + \frac{1}{24}hx^{4} + \cdots$$

we find that the harmonic, cubic, and quartic expansion coefficients are $\kappa = 2D_e \alpha^2$, $g = -6D_e \alpha^3$, and $h = 14D_e \alpha^4$.

The Morse oscillator Hamiltonian for a diatomic molecule of reduced mass m_R bound by this potential is

$$H = \frac{p^2}{2m_R} + V(x)$$

and has the eigenvalues

$$E_n = \hbar \omega_0 \left[\left(n + \frac{1}{2} \right) - x_e \left(n + \frac{1}{2} \right)^2 \right] \qquad n = 0, 1, 2, 3...$$
(2)

Here $\omega_0 = \sqrt{2D_e \alpha^2/m_R}$ is the fundamental frequency and $x_e = \hbar \omega_0 / 4D_e$ is the anharmonic constant. The frequency ω_0 is equivalent to equating the harmonic force constant $\kappa = (\partial^2 V / \partial x^2)_{x=0}$ with $m_R \omega_0^2$. The anharmonic constant x_e is commonly seen in the spectroscopy expression for the anharmonic vibrational energy levels

$$G(v) = \omega_e (v + \frac{1}{2}) - \omega_e x_e (v + \frac{1}{2})^2 + \omega_e y_e (v + \frac{1}{2})^3 + \cdots$$
(3)

¹ Morse, P. M., Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels. *Physical Review* **1929**, *34* (1), 57-64.

² Lefebvre-Brion, H. l. n.; Field, R. W., *The spectra and dynamics of diatomic molecules*. 2nd ed.; Academic Press: Boston, 2004.

From eq. (1.1) the ground state (or zero-point) energy is

$$E_0 = \frac{1}{2}\hbar\omega_0 \left(1 - \frac{1}{2}x_e\right) \tag{4}$$

So the dissociation energy for the Morse potential is given by $D_0 = D_e - E_0$. The transition energies are

$$E_{n} - E_{m} = \hbar \omega_{0} \left(n - m \right) \left[1 - x_{e} \left(n + m + \frac{1}{2} \right) \right]$$
(5)

The proper harmonic expressions are obtained from the above for the Morse oscillator by setting $D_e \rightarrow \infty$ or $x_e \rightarrow 0$.

The wavefunctions for the Morse oscillator can also be expressed analytically in terms of associated Laguerre polynomials $\mathcal{L}_n^b(z)$:³

$$\psi_n = N_n e^{-z/2} z^{b/2} \mathcal{L}_n^b(z)$$
(6)

where

$$N_n = [\alpha \cdot b \cdot n! / \Gamma(k - n)]^{1/2}$$

$$z = k \exp[-\alpha q]$$

$$b = k - 2n - 1$$

$$k = 4D_e / \hbar \omega_0$$

These expressions and those for matrix elements in q, q^2 , $e^{-\alpha q}$, and $qe^{-\alpha q}$ have been given by Vasan and Cross.⁴

³ Gallas, J. A. C., Some matrix elements for Morse oscillators. *Physical Review A* 1980, 21 (6), 1829-1834.

⁴ Vasan, V. S.; Cross, R. J., Matrix elements for Morse oscillators. *The Journal of Chemical Physics* **1983**, *78* (6), 3869-3871.