
Exponential Operators 

Throughout our work, we will make use of exponential operators of the form  
ˆˆ iAT e , 

We will see that these exponential operators act on a wavefunction to move it in time and space. 

Note the operator T̂  is a function of an operator, ˆ( )f A . A function of an operator is defined 

through its expansion in a Taylor series, for instance  
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The most common one will be the time-propagator or time-evolution operator, Û , which is a 
function of the Hamiltonian and propagates the wavefunction forward in time  
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 Since we use them so frequently, let’s review the properties of exponential operators that 

can be established with eq. (1.1).  If the operator Â is Hermetian, then 
ˆˆ iAT e  is unitary, i.e. 

† 1ˆ ˆT T  .  Thus the Hermetian conjugate of T̂  reverses the action of T̂ . For the time-propagator 

Û , †Û is often referred to as the time-reversal operator. 

 The eigenstates of the operator Â  also are also eigenstates of ˆ( )f A , and eigenvalues are 

functions of the eigenvalues of Â .  Namely, given the eigenvalues and eigenvectors of Â , i.e., 
ˆ

n n nA a  , you can show by expanding the function that 
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n n nf A f a   (1.3)  

Our most common application of this property will be to exponential operators in the 

Hamiltonian with eigenstates n . Then ˆ
n n nH E   implies 
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 Just as 
 

ˆ /ˆ iHtU e   is the time-evolution operator which displaces the wavefunctionin 

time, ˆ /ˆ xip x
xD e   is the spatial displacement operator that moves  along the x coordinate. If we 

define ˆ /ˆ ( ) xip
xD e    , then the action of is to displace the wavefunction by an amount .  

  ˆ( ) ( )x D x      (1.5) 

Also, applying ˆ ( )xD    to a position operator shifts the operator by  

 †ˆ ˆˆ ˆD xD x    (1.6) 

Thus ˆ xipe x
   is an eigenvector of x̂  with eigenvalue x +  instead of x.  The operator 

ˆˆ xip
xD e    is a displacement operator for x position coordinates. Similarly, 

ˆˆ yip

yD e    

generates displacements in y and ˆ
zD  in z.  Similar to the time-propagator Û , the displacement 

operator D̂  must be unitary, since the action of †ˆ ˆD D must leave the system unchanged. That is if 

D̂  shifts the system to x  from 0x , then †D̂ shifts the system from x back to 0x .   

 We know intuitively that linear displacements commute.  For example, if we wish to shift 
a particle in two dimensions, x and y, the order of displacement doesn’t matter. We end up at the 
same position.  These displacement operators commute, as expected from [px,py] = 0. 
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 Similar to the displacement operator, we can define rotation operators that depend on the 

angular momentum operators, Lx, Ly, and Lz. For instance  ˆ ( ) xi L
xR e     gives a rotation by 

angle  about the x-axis. Unlike linear displacement, rotations about different axes do not 

commute.  For example, consider a state representing a particle displaced along the z-axis, z0.  

Now the action of two rotations ˆ
xR   and ˆ

yR  by an angle of /2 on this particle differs depending 

on the order of operation.  
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The results of these two rotations taken in opposite order differ by a rotation about the z–axis.  
Thus, because the rotations about different axes don't commute, we must expect the angular 
momentum operators, which generate these rotations, not to commute.  Indeed, we know that 

[Lx,Ly] = iLz, where the commutator of rotations about the x and y axes is related by a z-axis 

rotation. 
 As with rotation operators, we will need to be careful with time-propagators to determine 
whether the order of time-propagation matters.  This, in turn, will depend on whether the 
Hamiltonians at two points in time commute.  
 Finally, it is worth noting some relationships that are important in evaluating the action of 
exponential operators.  

(1) The Baker-Hausdorff relationship: 
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  (1.7) 

(2) If Â   and  B̂  do not commute, but ˆ ˆ,A B 
    commutes with  Â   and  B̂  , then 
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