
 
 

 

10. LINEAR RESPONSE THEORYEquation Chapter 10 Section 1 

10.1. Classical Linear Response Theory 

Correlation functions provide a statistical description of the dynamics of molecular variables; 

however, it remains unclear how they are related to experimental observables. You have 

probably sensed this from the perspective that correlation functions are complex, and how can 

observables be complex? Also, correlation functions describe equilibrium dynamics, but from a 

realistic point of view, exerting external forces should move the system away from equilibrium. 

What happens as a result? These questions fall into the realm of nonequilibrium statistical 

mechanics, an area of active research for which formal theories are limited and approximation 

methods are the primary tool. Linear response theory is the primary approximation method, 

which describes the evolution away or toward equilibrium under perturbative conditions.  

 We will use linear response theory as a way of describing a real experimental observable. 

Specifically this will tell us how an equilibrium system changes in response to an applied 

potential. The quantity that will describe this is a response function, a real observable quantity. 

We will go on to show how it is related to correlation functions. Embedded in this discussion is a 

particularly important observation. We will now deal with a nonequilibrium system, but we will 

show that when the changes are small away from equilibrium, the equilibrium fluctuations 

dictate the nonequilibrium response! Thus knowledge of equilibrium dynamics is useful in 

predicting the outcome of nonequilibrium processes.   

 So, the question is “How does the system respond if you drive it away from 

equilibrium?” We will examine the case where an equilibrium system, described by a 

Hamiltonian H0 interacts weakly with an external agent, V(t). The system is moved away from 

equilibrium by the external agent, and the system absorbs energy from the external agent.   

 How do we describe the time-dependent properties of the system? We first take the 

external agent to interact with the system through an internal variable A. So the Hamiltonian for 

this problem is given by 

  0H H f t A   (10.1) 

Here f(t) is the time-dependent action of the 

external agent, and the deviation from 

equilibrium is linear in the internal variable. 

We describe the behavior of an ensemble 

initially at thermal equilibrium by assuming 

that each member of the ensemble is subject to 

the same interaction with the external agent, and then ensemble averaging. Initially, the system is
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described by H0. It is at equilibrium and the internal variable is characterized by an equilibrium 

ensemble average A . The external agent is then applied at time t0, and the system is moved 

away from equilibrium, and is characterized through a nonequilibrium ensemble average, A . 

 A A t as a result of the interaction.  

 For a weak interaction with the external agent, we can describe  A t  by performing an 

expansion in powers of  f t .   

        0 1A t terms f terms f    (10.2) 

      0 0 0,A t A dt R t t f t     (10.3) 

In this expression the agent is applied at 0t , and we observe the system at t . The leading term in 

this expansion is independent of f, and is therefore 

equal to A . The next term in (10.3) describes the 

deviation from the equilibrium behavior in terms of a 

linear dependence on the external agent.  0,R t t  is 

the linear response function, the quantity that contains 

the microscopic information on the system and how it 

responds to the applied agent. The integration in the 

last term of eq. (10.3) indicates that the 

nonequilibrium behavior depends on the full history 

of the application of the agent  0f t  and the response 

of the system to it. We are seeking a quantum 

mechanical description of R. 

Properties of the response function 

1. Causal: Causality refers to the common sense observation that the system cannot respond 

before the force has been applied. Therefore  0, 0R t t   for 0t t , and the time-dependent 

change in A is 

        0 0 0,
t

A t A t A dt R t t f t


     (10.4) 

The lower integration limit is set to   to reflect that the system is initially at equilibrium, and 

the upper limit is the time of observation. We can also make the statement of causality explicit 

by writing the linear response function with a step response:    0 0,t t R t t  , where 

    
 

0
0

0

0

1

t t
t t

t t

    
 (10.5) 
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2. Stationary: Similar to our discussion of correlation functions, the time-dependence of the 

system only depends on the time interval between application of the potential and observation. 

Therefore we write    0 0,R t t R t t   and 

      0 0 0

t
A t dt R t t f t


   (10.6) 

This expression says that the observed response of the system to the agent is a convolution of the 

material response with the time-development of the applied force. 

 Rather than the absolute time points, we can define a time-interval 0t t   , so that we 

can write 

      
0

A t d R f t   


   (10.7) 

3. Impulse response: Note that for a delta function perturbation: 

    0f t t t   (10.8) 

We obtain 

    0A t R t t    (10.9) 

Thus, R describes how the system behaves when an 

abrupt perturbation is applied and is often referred to as 

the impulse response function. An impulse response 

kicks the system away from the equilibrium established 

under H0, and therefore the shape of a response function 

will always rise from zero and ultimately return to zero.  

In other words, it will be a function that can be expanded 

in sines. Thus the response to an arbitrary f(t) can be 

described through a Fourier analysis, suggesting that a 

spectral representation of the response function would be 

useful. 

The susceptibility 

The observed temporal behavior of the nonequilibrium system can also be cast in the frequency 

domain as a spectral response function, or susceptibility. We start with eq. (10.7) and Fourier 

transform both sides:   
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   

   
0

i t

i t

A dt A t e

dt d R f t e





  

  





 





    



 
 (10.10) 

Now we insert 1i ie e     and collect terms to give  

        
0

i t iA dt d R f t e e      
  


    (10.11) 

    
0

i t idt e f t d R e  
 


     (10.12) 

or      A f       (10.13) 

In eq. (10.12) we switched variables, setting t t    . The first term ( )f   is a complex 

frequency domain representation of the driving force, obtained from the Fourier transform of 

f(t′). The second term χ(ω) is the susceptibility which is defined as the Fourier–Laplace 

transform (single-sided Fourier transform) of the impulse response function. It is a frequency-

domain representation of the linear response function. Switching between time and frequency 

domains shows that a convolution of the force and response in time leads to the product of the 

force and response in frequency. This is a manifestation of the convolution theorem:  

                1A t B t d A t B d A B t A B       
  

 
           F  (10.14) 

Here   refers to convolution,    A A t    
 F ,  F  is a Fourier transform, and  1 F  is 

an inverse Fourier transform. 

 Note that  R   is a real function, since the response of a system is an observable. The 

susceptibility     is complex:  

      i         (10.15) 

Since    
0

i
ed R    


   (10.16) 

However, the real and imaginary contributions are not independent. We have  

   
0

cosd R   


    (10.17) 

and   
0

sind R   


    (10.18) 

 and   are even and odd functions of frequency: 

            (10.19) 

             (10.20) 
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so that     *      (10.21) 

Notice also that eq. (10.21) allows us to write  

      1

2
            (10.22) 

      1

2i
            (10.23) 

 

 
 
 
 
 
 
Kramers–Krönig relations 

Since they are cosine and sine transforms of the same function,    is not independent of

   . The two are related by the Kramers–Krönig relationships: 

    1
d

 
  

  




 
 

 P
+

 (10.24) 

    1
d

 
  

  




 
  

 P  (10.25) 

These are obtained by substituting the inverse sine transform of eq. (10.18) into eq. (10.17):  

Example of a high frequency underdamped response 
function oscillating as sin(0t) and corresponding 

susceptibility  

Example of a low frequency overdamped response 
function and corresponding susceptibility  
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   

 

0

0

1
cos sin

1
lim cos sin

L

L

dt t t d

d t t dt

      


    


 







    

   

 

 
 (10.26) 

Using    1 1
2 2cos sin sin sinax bx a b x b a x    , this can be written as 

        1
2

cos 1 cos 11
lim
L

L L
d

   
    

    




      
       

P  (10.27) 

If we choose to evaluate the limit L  , the cosine terms are hard to deal with, but we expect 

they will vanish since they oscillate rapidly. This is equivalent to averaging over a 

monochromatic field. Alternatively, we can average over a single cycle:  2 /L     to 

obtain eq. (10.24). The other relation can be derived in a similar way. Note that the Kramers–

Krönig relationships are a consequence of causality, which dictate the lower limit of tinitial = 0 on 

the first integral evaluated above. 

Example: Driven harmonic oscillator 

One can classically model the absorption of light through a resonant interaction of the 

electromagnetic field with an oscillating dipole, using Newton’s equations for a forced damped 

harmonic oscillator:   

  2
0    /x x x F t m      (10.28) 

Here the x is the coordinate being driven,   is the damping constant, and 0 /k m   is the 

natural frequency of the oscillator. We originally solved this problem is to take the driving force 

to have the form of a monochromatic oscillating source 

   0 cosF t F t  (10.29) 

Then, equation (10.28) has the solution  

      
1

22 2 2 2 20
0  ( ) sin

F
x t t

m
     



     (10.30) 

with 2 2
0tan      (10.31) 

This shows that the driven oscillator has an oscillation period that is dictated by the driving 

frequency , and whose amplitude and phase shift relative to the driving field is dictated by its 

detuning from resonance. If we cycle-average to obtain the average absorbed power from the 

field, the absorption spectrum is 
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 

 
1

2
2 2

22 2 2 20
0

( ) ( )

2

avgP F t x t

F

m



    


 

     


 (10.32) 

 To determine the response function for the damped harmonic oscillator, we seek a 

solution to eq. (10.28) using an impulsive driving force    0 0F t F t t  . The linear response 

of this oscillator to an arbitrary force is  

      
0

  x t d R F t  


   (10.33) 

so that time-dependence with an impulsive driving force is directly proportional to the response 

function,    0x t F R t . For this case, we obtain    

   1
  exp sin

2
R

m

        
 (10.34) 

The reduced frequency is defined as  

 2 2
0 4     (10.35) 

From this, we evaluate eq. (10.16) and obtain the susceptibility 

    2 2
0

1
  

m i
 

  


 
 (10.36) 

As we will see shortly, the absorption of light by the oscillator is proportional to the imaginary 

part of the susceptibility 

  
 22 2 2 2

0

  
m

 
   

 
    

 (10.37) 

The real part is 

  
 

2 2
0

22 2 2 2
0

  
m

  
   

 
    

 (10.38) 

 For the case of weak damping 0   commonly 

encountered in molecular spectroscopy, eq. (10.36) is 

written as a Lorentzian lineshape by using the near-resonance approximation  

     2 2
0 0 0 0    2                (10.39) 

  
0 0

1 1

2 / 2m i
 

   


 
. (10.40) 
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Then the imaginary part of the susceptibility shows asymmetric lineshape with a line width of  
full width at half maximum. 
 

  
 2 2

0 0

1

2 / 4m

 
   

 
 

 (10.41) 

    
 

0
2 2

0 0

1

/ 4m

 
 

   


 

 
 (10.42) 

 
 

 

Nonlinear response functions 

If the system does not respond in a manner linearly proportional to the applied potential but still 

perturbative, we can include nonlinear terms, i.e. higher expansion orders of  A t  in eq. (10.3). 

Let’s look at second order:  

  
         
2 2

1 2 1 2 1 1 2 2; ,A t dt dt R t t t f t f t     (10.43) 

Again we are integrating over the entire history of the application of two forces f1 and f2, 

including any quadratic dependence on f .   

 In this case, we will enforce causality through a time 

ordering that requires (1) that all forces must be applied 

before a response is observed and (2) that the application of f2 

must follow f1. That is 2 1t t t   or 
 

          2 2
1 2 2 2 1; ,R t t t R t t t t      (10.44) 

which leads to  

  
         22 2

2 1 1 2 1 1 2 2; ,
t t

A t dt dt R t t t f t f t
 

    (10.45) 

Now we will call the system stationary so that we are only concerned with the time intervals 

between consecutive interaction times. If we define the intervals between adjacent interactions 

 1 2 1

2 2

t t

t t



 
 

 (10.46) 
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Then we have 

  
         
2 2

1 2 1 2 1 1 2 2 20 0
,A t d d R f t f t       

 
      (10.47) 
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10.2. Quantum Linear Response Functions 

To develop a quantum description of the linear response function, we start by recognizing that 

the response of a system to an applied external agent is a problem we can solve in the interaction 

picture. Our time-dependent Hamiltonian is  

      0 0
ˆH t H f t A H V t     (10.48) 

0H  is the material Hamiltonian for the equilibrium system. The external agent acts on the 

equilibrium system through Â , an operator in the system states, with a time-dependence f(t). We 

take V(t) to be a small change, and treat this problem with perturbation theory in the interaction 

picture.   

 We want to describe the nonequilibrium response  A t , which we will get by ensemble 

averaging the expectation value of Â , i.e.  A t . Remember the expectation value for a pure 

state in the interaction picture is  

 
       

†
0 0

I I I

I I I

A t t A t t

U A U

 

 




 (10.49) 

The interaction picture Hamiltonian for eq. (10.48) is 

 
       

   

†
0 0I

I

V t U t V t U t

f t A t



 
 (10.50) 

To calculate an ensemble average of the state of the system after applying the external potential, 

we recognize that the nonequilibrium state of the system characterized by described by  I t  

is in fact related to the initial equilibrium state of the system 0  through a time-propagator, as 

seen in eq. (10.49). So the nonequilibrium expectation value  A t  is in fact obtained by an 

equilibrium average over the expectation value of †
I I IU A U : 

   †
n I I I

n

A t p n U A U n  (10.51) 

Again n  are eigenstates of H0. Working with the first order solution to  IU t  

      
0

0 1
t

I It

i
U t t dt f t A t       (10.52) 

we can now calculate the value of the operator A at time t, integrating over the history of the 

applied interaction  f t : 
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 

         
0 0

†

1     1

I I I

t t

I I It t

A t U A U

i i
dt f t A t A t dt f t A t



             
     

 (10.53) 

Here note that f is the time-dependence of the external agent. It does not involve operators in H0 

and commutes with A. Working toward the linear response function, we just retain the terms 

linear in  f t  

 
              

       

0

0

  

,

t

I I I I It

t

I I It

i
A t A t dt f t A t A t A t A t

i
A t dt f t A t A t

     

      








 (10.54) 

Since our system is initially at equilibrium, we set 0t    and switch variables to the time 

interval t t   and using      †
0 0IA t U t AU t  obtain 

          
0

, 0I I I

i
A t A t d f t A A  


       (10.55) 

We can now calculate the expectation value of A by performing the ensemble-average described 

in eq. (10.51). Noting that the force is applied equally to each member of ensemble, we have 

        
0

, 0I I

i
A t A d f t A A  


       (10.56) 

The first term is independent of f, and so it comes from an equilibrium ensemble average for the 

value of A. 

   n I
n

A t p n A n A   (10.57) 

The second term is just an equilibrium ensemble average over the commutator in AI(t): 

        , 0 , 0I I n I I
n

A A p n A A n         (10.58) 

Comparing eq. (10.56) with the expression for the linear response function, we find that the 

quantum linear response function is 

 
     , 0          0

0                                        < 0

I I

i
R A A  



    


  (10.59) 

or as it is sometimes written with the unit step function in order to enforce causality: 

        , 0I I

i
R A A       

 (10.60) 
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The important thing to note is that the time-development of the system with the applied external 

potential is governed by the dynamics of the equilibrium system. All of the time-dependence in 

the response function is under H0. 

 The linear response function is therefore the sum of two correlation functions with the 

order of the operators interchanged, which is the imaginary part of the correlation function 

  C   

 

            

      

   

*

  0   0

  

2

I I I I

AA AA

i
R A A A A

i
C C

C

   

  

 

   

   

 







 (10.61) 

As we expect for an observable, the response function is real. If we express the correlation 

function in the eigenstate description: 

   2

,

   mni t
n mn

n m

C t p A e   (10.62) 

then     2

,

2
  sinn mn mn

n m

R t t p A t  
 (10.63) 

 R   can always be expanded in sines—an odd function of time. This reflects that fact that the 

impulse response must have a value of 0 (the deviation from equilibrium) at t = t0, and move 

away from 0 at the point where the external potential is applied.  

Readings 

1. Mukamel, S., Principles of Nonlinear Optical Spectroscopy. Oxford University Press: New 
York, 1995; Ch. 5. 
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10.3. The Response Function and Energy Absorption 

Let’s investigate the relationship between the linear response function and the absorption of 

energy from the external agent—in this case an electromagnetic field. We will relate this to the 

absorption coefficient /E I    which we have described previously. For this case,  

    0 0  H H f t A H E t      (10.64) 

This expression gives the energy of the system, so the rate of energy absorption averaged over 

the nonequilibrium ensemble is described by:  

    
H f

E A t
t t

 
  

 
  (10.65) 

We will want to cycle-average this over the oscillating field, so the time-averaged rate of energy 

absorption is 

 
 

     

0

0 0

1
  

1
 

T

T

f
E dt A t

T t

f t
dt A d R f t

T t
  



    
      



 



 (10.66) 

Here the response function is      , 0 /R i         . For a monochromatic 

electromagnetic field, we can write  

   *
0 0 0

1
2  cos   i t i tf t E t E e E e        (10.67) 

which leads to the following for the second term in (10.66): 

          * *
0 0 0 00

1 1
 

2 2
i t i t i t i td R E e E e E e E e          

              (10.68) 

By differentiating (10.67), and using it with (10.68) in eq. (10.66), we have 

       * *
0 0 0 00

1 1
  0    

4

T i t i t i t i tE A f T f dt i E e i E e E e E e
T T

                             (10.69) 

We will now cycle-average this expression, setting 2T   . The first term vanishes and the 

cross terms in second integral vanish, because 
0

1 1 
T i t i t

T dt e e     and 
0

  0
T i t i tdt e e    . 

 The rate of energy absorption from the field is 

 
   

 

2

0

2

0

  = 
4

 
2

i
E E

E

    

  

   




 (10.70) 
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So, the absorption of energy by the system is related to the imaginary part of the susceptibility. 

Now, from the intensity of the incident field, 2

0 / 8I c E  , the absorption coefficient is 

    4
    

E

I c

    


 (10.71) 

Readings 

1. McQuarrie, D. A., Statistical Mechanics. Harper & Row: New York, 1976. 

 



10-15 
 

 

10.4. Relaxation of a Prepared State 

The impulse response function  R t  describes the 

behavior of a system initially at equilibrium that is 

driven by an external field. Alternatively, we may 

need to describe the relaxation of a prepared state, in 

which we follow the return to equilibrium of a system 

initially held in a nonequilibrium state. This behavior 

is described by step response function  S t . The step 

response comes from holding the system with a 

constant field 0H H fA   until a time t0 when the 

system is released, and it relaxes to the equilibrium 

state governed by 0H H .   

 We can anticipate that the forms of these two functions are related. Just as we expect that 

the impulse response to rise from zero and be expressed as an odd function in time, the step 

response should decay from a fixed value and look even in time. In fact, we might expect to 

describe the impulse response by differentiating the step 

response, as seen in the classical case. 

    1
  

d
R t S t

kT dt
  (10.72) 

 An empirical derivation of the step response begins with 

a few observations. First, response functions must be real since 

they are proportional to observables, however quantum correlation functions are complex and 

follow    *  C t C t  . Classical correlation functions are real and even,      C t C t  , and have 

the properties of a step response. To obtain the relaxation of a real observable that is even in 

time, we can construct a symmetrized function, which is just the real part of the correlation 

function: 

 

          
    

 

1
2

1
2

  0   0

        

AA I I I I

AA AA

AA

S t A t A A A t

C t C t

C t

 

  



 (10.73) 

The step response function S defined as follows for 0t  .   

        1
, 0I IS A A  


    

 (10.74) 

From the eigenstate representation of the correlation function, 
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   2

,

mn
n mn

n m

i tC t p A e   (10.75) 

we see that the step response function can be expressed as an expansion in cosines 

     2

,

2
  cosn mn mn

n m

S t t p A t  
 (10.76) 

Further, one can readily show that the real and imaginary parts are related by 

 

dC
C

dt
dC

C
dt










 (10.77) 

Which shows how the impulse response is related to the time-derivative of the step response.  

 In the frequency domain, the spectral representation of the step response is obtained from 

the Fourier–Laplace transform 

    
0

  AA AA
i tS dt S t e 


   (10.78) 

 
     

   

1
2

1
2

    

 1  

AA AA AA

AA

S C C

Ce  

  



    

    (10.79) 

Now, with the expression for the imaginary part of the susceptibility,  

      1
 1  
2 AAe C      


 (10.80) 

we obtain the relationship 

    1
  tanh

2 AAS
       

 



 (10.81) 

This is the formal expression for the fluctuation-dissipation theorem, proven in 1951 by Callen 

and Welton. It followed an observation made many years earlier (1930) by Lars Onsager for 

which he was awarded the 1968 Nobel Prize in Chemistry: “The relaxation of macroscopic 

nonequilibrium disturbance is governed by the same laws as the regression of spontaneous 

microscopic fluctuations in an equilibrium state.”   

 Noting that      tanh x x x xx e e e e     and  tanh x x  for x>>1, we see that in the 

high temperature (classical) limit  

    1
  

2 AAS
kT

      (10.82) 
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Appendix: Derivation of step response function 

We can show more directly how the impulse and step response are related. To begin, let’s 

consider the step response experiment,  

 0

0

0

0

H fA t
H

H t

 
  

 (10.83) 

and write the expectation values of the internal variable A for the system equilibrated under H at 

time t = 0 and t = ∞.  

 
 

 
0

0

00
0

H fA
H fAe

A A Z e
Z




 
    (10.84) 

 
0

0

H
He

A A Z e
Z










   (10.85) 

If we make the classical linear response approximation, which states that when the applied 

potential fA  is very small relative to 0H , then 

    0 0 1H fA He e fA       (10.86) 

and 0Z Z , that 

 2

0
A A A f A 


    (10.87) 

and the time dependent relaxation is given by the classical correlation function 

      0A t f A A t   (10.88) 

 For a description that works for the quantum case, let’s start with the system under 0H  at 

t=∞, ramp up the external potential at a slow rate  until t=0, and then abruptly shut off the 

external potential and watch the system. We will describe the behavior in the limit →.  
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 0

0

0

0

tH fAe t
H

H t

  
 


 (10.89) 

Writing the time-dependence in terms of a convolution over the impulse response function R, we 

have 

      
0

0
lim tA t dt t t R t t e f


 




       (10.90) 

Although the integral over the applied force (t’) is over times t<0, the step response factor 

ensures that t≥0. Now, expressing R as a Fourier transform over the imaginary part of the 

susceptibility, we obtain 

 

     

 

 

 

0

0
lim

2

1

2

2

i t i t

i t

i t

f
A t dt d e e

f
d PP e

i

f
d e

i

f C t



  





   


  
 

  





 









  

     





 





 (10.91) 

A more careful derivation of this result that treats the quantum mechanical operators properly is 

found in the references. 

Readings 

1. Mazenko, G., Nonequilibrium Statistical Mechanics. Wiley-VCH: Weinheim, 2006. 

2. Zwanzig, R., Nonequilibrium Statistical Mechanics. Oxford University Press: New York, 
2001. 

 


